
A Spatiotemporal Machine Learning Framework for
Ecologically-informed Bird Sighting Prediction

Abstract—Fine-grained bird sighting prediction is crucial for
advancing ecological research, informing conservation planning,
and enhancing the birdwatching experience while fostering public
awareness of biodiversity. The rapid expansion of citizen-based
bird observation networks has led to an exponential accumulation
of bird sighting records, which can be leveraged to train machine
learning models for more precise predictions. However, general-
purpose machine learning models often fail to incorporate ecolog-
ical factors that influence bird activity, resulting in less accurate
predictions. In this paper, we present an ecologically informed
machine learning framework based on LightGBM that integrates
spatiotemporal correlations, ecological context, and dynamic
environmental variables to improve bird sighting predictions.
The framework captures temporal trends using rolling windows,
applies spatial smoothing to account for observation proximity,
and models ecological dependencies—such as temperature-food
interactions—through interaction terms. Key environmental fac-
tors, including habitat classifications, weather conditions, and
seasonally adjusted food availability proxies, are dynamically
incorporated to enhance ecological relevance. Evaluation results
demonstrate significant improvements in predictive accuracy,
with increased F1-scores compared to baseline methods. By
embedding ecological principles into machine learning models,
this framework enables data-driven insights that reflect real-
world environmental complexities, providing a powerful tool for
biodiversity monitoring and conservation strategies.

I. INTRODUCTION

Birds are vital bioindicators of ecosystem health, provid-
ing crucial insights into biodiversity, environmental changes,
and the impacts of climate change. Their presence, activ-
ity, and distribution patterns reflect the condition of natural
habitats, making them essential for ecological research and
conservation planning [1]. Fine-grained forecasting of bird
activity—predicting the number of birds observable at specific
locations on particular days—can enhance habitat preservation
efforts, support biodiversity monitoring, and foster public
engagement with nature [2]. By offering precise spatial pre-
dictions, such models can assist in identifying critical habitats
for biodiversity monitoring and conservation planning [3].

Citizen-based bird observation networks, such as eBird [4],
provide a global platform for bird enthusiasts to record species
observations, including location and time. Crowd-sourced data
from these networks have already been leveraged for coarse-
grained analyses, such as estimating species distributions [5],
modeling population changes in migratory bird species [6], and
learning seasonal bird movement patterns [7]. Advancements
in machine learning have further enhanced bird identifica-
tion and data collection, with BirdNET [8] utilizing artificial
intelligence to classify bird species from audio recordings.
The integration of BirdNET into eBird has led to exponential

growth in observations, reaching 226 million records in 2023.1.
This rapidly expanding dataset presents an unprecedented op-
portunity to move beyond coarse-grained analyses toward fine-
grained ecological insights, such as predicting bird activity at
specific locations and times. However, despite its potential,
this wealth of data remains largely underutilized.

While existing methods for predicting bird activity have
provided valuable insights, they predominantly rely on histor-
ical observations and general-purpose predictive models [9].
However, bird activity is influenced by dynamic environmental
factors such as habitat changes, food availability, and weather
conditions, which these models often fail to incorporate in
real time. As a result, they struggle to capture the complexity
of bird movement, particularly the spatiotemporal correlations
that govern migration patterns and habitat utilization [10].

Additionally, most prior studies focus on broad, geograph-
ically dispersed datasets that, while useful for large-scale
assessments, often overlook localized ecological contexts that
provide more actionable insights for conservation effort [11].
Furthermore, while machine learning approaches have im-
proved species classification, they often lack the ability to
integrate ecological principles effectively, limiting their inter-
pretability and generalizability across diverse species and re-
gions [12] . This is particularly evident in the study of complex
ecological processes, such as animal movement and habitat
utilization, where spatiotemporal correlations are critical but
often poorly captured by existing models.

To address these challenges, we present an ecologically
informed machine learning framework based on LightGBM
that integrates spatiotemporal correlations, ecological context,
and dynamic environmental variables for accurately predicting
bird sightings. Unlike previous approaches, our framework
captures temporal trends using rolling windows, applies spa-
tial smoothing to account for observation proximity, and
models ecological dependencies—such as temperature-food
interactions—through interaction terms. Key environmental
factors, including habitat classifications, weather conditions,
and seasonally adjusted food availability proxies, are dynami-
cally incorporated to enhance ecological relevance. While our
initial implementation focuses on American Robin sightings in
Michigan, the framework is designed for broad applicability,
making it adaptable to different bird species and geographical
contexts. Our evaluation demonstrates that the proposed frame-
work significantly improves predictive accuracy compared to
baseline methods. We achieve higher precision and recall, with

1https://tinyurl.com/3whdzujp



a substantial reduction in mean squared error and increased
F1-scores. By embedding ecological principles within machine
learning predictions, our framework provides valuable insights
for biodiversity monitoring and habitat management.

The key contributions of this work are:
• A machine learning framework for bird sighting predic-

tion that incorporates spatiotemporal correlations, ecolog-
ical context, and dynamic environmental variables. By
collaborating with domain experts, the framework inte-
grates general ecological factors influencing bird activity
across species and regions, enhancing its accuracy and
generalizability.

• The first dataset of American Robin sightings in Michi-
gan, capturing detailed spatiotemporal and environmental
patterns. This dataset provides a valuable foundation
for fine-grained bird sighting prediction and serves as a
benchmark for evaluating ecological models in real-world
scenarios.

• Empirical validation demonstrating superior predictive
performance over baseline models.

The remainder of this paper is structured as follows: Sec-
tion II details our proposed methodology, including feature
engineering and model architecture. Section III details how
we collected dataset for American Robin in Michigan and
implemented the framework. Section IV presents our ex-
periment setup, results and analysis. Section V summarizes
existing approaches and compares them with our approach,
and Section VI concludes with discussions on future directions
and applications.

II. METHODOLOGY

In this section, we first present the design goals, key
challenges, and an overview of the proposed machine learning
framework. We then provide a detailed explanation of each
step in the framework.

A. Overview: Objective, Challenges, and Solution

Our objective is to develop a method for estimating the
probability of observing a given bird species at different
locations within a specified region. To accomplish this, we
must address the following challenges:

1) How can we identify the ecological factors that
influence bird activity and are available from existing
data sources? Bird activity is driven by a complex in-
terplay of environmental and ecological factors, includ-
ing temporal dynamics (e.g., seasonal migrations) and
spatial characteristics (e.g., habitat connectivity) [13] .
Additionally, the availability of relevant data must be
considered when representing these factors.
Solution: We collaborated with an avian domain expert
to identify key ecological factors and explored methods
for obtaining them from online web services and various
data sources.

2) How can we incorporate these factors to model their
impact on bird activity? Integrating diverse data types,
such as habitat classifications, weather conditions, and

food availability, requires effective data preprocessing
and feature engineering [14].
Solution: Building on previous studies [13], [14], we
incorporate spatio-temporal correlations into our bird
activity prediction model. Prior research has demon-
strated that integrating both spatial and temporal de-
pendencies improves predictive performance [15]. Tem-
poral features, such as rolling windows and seasonality
trends, help capture periodic behaviors like breeding and
migration [14]. Similarly, spatial dependencies—arising
from habitat connectivity, geographic proximity, and
environmental gradients—provide crucial context for
understanding bird sighting distribution patterns.

3) How can we learn accurate predictive models espe-
cially with limited training data? Machine learning
models often fail to learn a suitable hypothesis in the
presence of limited training data, making it essential to
build models that can learn from limited data without
compromising their predictive power [16].
Solution: Our solution employs a LightGBM model,
selected for its ability to efficiently handle categorical
features and its proven effectiveness in spatiotemporal
ecological modeling [17]. Unlike deep learning methods
that require extensive training data, LightGBM provides
robust predictions even with limited seasonal data. By
leveraging a tree ensemble, our model captures complex
feature relationships while remaining more transparent
than deep neural networks in terms of interpretability,
allowing us to get insights into the importance of
features explaining the model’s predictions. This bal-
ance makes LightGBM particularly well-suited for fine-
grained, context-specific ecological predictions, ensuring
both reliable performance and actionable insights for
conservation efforts.

B. Identifying Ecological Factors

Working with our avian behavior expert, we identified
several key determinants of bird activity:

• Habitat Characteristics: The structure and composition
of habitats fundamentally influence bird presence and be-
havior. The domain expert emphasized how factors such
as vegetation density, tree height, and foliage diversity
affect nesting site selection and foraging activities. For
example, studies have found that tree height, distance
from central lawns, and tree coverage were the primary
factors that influence the selection of nest sites in urban
environments [18].

• Climate and Weather Conditions: Temperature, pre-
cipitation, and seasonal changes critically influence mi-
gration patterns and daily activities of birds. The expert
highlighted how adverse weather can alter flight paths
and timing, while favorable conditions enhance feeding
efficiency following prior work. [19].

• Food Availability: The abundance and distribution of
food resources emerged as a crucial factor in our expert
consultations. Birds adjust their movements and timing
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to exploit areas with higher food availability, particularly
during breeding and migration periods [20].

• Human Activities: Our expert emphasized how urban-
ization, light pollution, and noise can significantly disrupt
natural behaviors. These human-induced factors create
distinct ecological contexts that shape bird activity in
region-specific ways, including altered foraging patterns
around artificial food sources and adapted habitat use in
urban green spaces [18].

While the domain expert identified key factors influenc-
ing bird behavior, obtaining comprehensive and reliable data
sources for these factors posed a challenge. In particular,
real-time food availability and habitat quality lack direct
measurement methods. To address this, we approximate these
difficult-to-quantify features for a given bird species at a
specific location by combining: (1) the location’s environ-
mental context (e.g., presence of forest, wetland, open water,
or grassland); (2) the bird’s habitat preferences; and (3) the
quantity and quality of suitable habitat in these contexts at
different times of the year. Habitat and food preference data
were primarily sourced from Birds of the World [21], which
provides comprehensive documentation of American Robin
habitat use and diet across different landscapes and seasons.
This data directly informed the construction of our resource
availability index. We additionally validated our habitat-diet
modeling assumptions using U.S. Biological Survey records,
as detailed by Wheelwright [22].

C. Feature Engineering

Given a spatiotemporal series X≤t, ym,t, where X≤t ∈
RT×D represents dynamically encoded input features of di-

mension D collected until time t (T denotes the total time
step), ym,t denotes the categorical target variable at each time-
step t, the objective of the prediction problem is to estimate
future target variables ym,t+1 at time t+1 given the historical
context X≤t+1. The input features X≤t encompass environ-
mental, spatial, and temporal dimensions, specifically designed
to capture bird observation patterns with an ecological fo-
cus. The model generates predictions ŷm,t+1 by conditioning
each step on previously observed states, ensuring temporal
consistency. Bird movement patterns are fundamentally driven
by three key factors: habitat suitability, temporal cycles, and
environmental conditions [23], [24]. Studies have shown that
habitat-driven changes significantly impact species distribution
over time, necessitating dynamic modeling approaches that
incorporate both spatial and temporal habitat factors [24].
Our architecture, as shown in Figure 1, explicitly models
these biological drivers through specialized components, each
capturing a critical aspect of avian behavior.

The proposed architecture was selected for its ability to
integrate multiple drivers of bird activity into a cohesive
framework. Spatial features provide critical location-specific
context, temporal features capture seasonal trends and local-
ized dynamics, and environmental features model external
influences such as weather and resource availability. This
multi-component design enables the model to capture complex
ecological patterns essential for bird activity prediction.

The input features X≤t are processed through three spe-
cialized components, each addressing a specific dimension
of bird activity, as depicted in Figure 1. The spatial compo-
nent, denoted as xs represents location-specific attributes and
includes geographic coordinates [lat, lon] and direct habitat
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Fig. 2. Food Availability by Habitat and Season

encoding h(li), which captures land cover classification from
the National Land Cover Database. The use of direct habitat
encoding simplifies the model while retaining critical ecolog-
ical information.

The temporal component, denoted xt encodes seasonal,
local dynamic, and rate-of-change effects. Seasonal trends
s(t) are represented using sine and cosine transformations
to capture annual periodicity. Localized trends are captured
through rolling statistics, r(t), which compute a 7-day rolling
mean and standard deviation. Rate-of-change effects, δ(t),
model temporal variations such as daily or weekly changes
in bird activity. The 7-day window was selected based on its
effectiveness in capturing weekly patterns in bird observation
frequency, a practice commonly employed in large-scale bird
monitoring platforms such as eBird. Additionally, structured
data validation approaches, such as those described by Yu
et al. [25], reinforce the importance of systematic temporal
windows in large-scale citizen science projects to ensure data
consistency and quality.

By leveraging a 7-day rolling window, the temporal compo-
nent captures both circadian rhythms through daily statistics
and seasonal migration patterns through annual periodicity
transforms, aligning with known behavioral cycles in bird
populations [23].

The environmental component, denoted xe captures ex-
ternal factors influencing bird observations. This includes
weather parameters [T,W,P,C], representing temperature,
wind speed, precipitation, and cloud cover, respectively. Ad-
ditionally, a resource availability index F quantifies food
and habitat availability, incorporating seasonal dietary shifts
derived from ecological studies. Weather parameters directly
influence bird activity patterns, with temperature and precipi-
tation affecting foraging behavior, wind conditions impacting
flight patterns, and cloud cover influencing visibility and
hunting success [19]. The resource availability index captures
seasonal variations in food sources that drive bird movement

decisions.
The resource availability index F is constructed by com-

bining habitat-specific seasonal patterns with environmental
conditions. For each habitat type h at time t, we compute:

F (h, t) = wh · S(t) · E(t) (1)

where wh represents habitat-specific weights derived from
NLCD classifications, S(t) captures seasonal food availability
patterns documented in ecological literature [21] as a real-
valued function in [0,1], and E(t) represents environmental
modulators (temperature, precipitation) mapped to a real value
between [0,1]. Both S(t) and E(t) are continuous functions
that quantify ecological patterns and environmental conditions
respectively.

To illustrate how this index reflects known ecological
patterns, Figure 2 presents the resource availability index
for a specific bird species (Robin) across different location
contexts. The figure highlights key ecological differences by
dividing habitats into two categories: (1) forests and wetlands,
which provide high seasonal food availability, particularly
during breeding and migration periods, and (2) developed and
agricultural landscapes, which offer lower and more stable but
less seasonally variable resources.

This distinction enables clearer comparisons between habi-
tats with fundamentally different ecological functions. No-
tably, deciduous forests show peak food availability in spring
and summer due to increased invertebrate abundance, while
mixed forests sustain moderate resource availability into the
fall through fruit production. This multi-habitat composition
aligns with documented American Robin foraging patterns
[21] where different habitats offer complementary resources
throughout the annual cycle.

D. Spatial Attention Mechanism
To capture location-specific patterns and spatial dependen-

cies, the model employs a simplified spatial attention mecha-



nism, as shown in Figure 1. For a given pair of locations li
and lj , the attention weight αij is computed using a softmax
function as below:

αij =
exp(−d(li, lj)/τ + ϕ(h(li), h(lj)))∑

k∈N(i) exp(−d(li, lk)/τ + ϕ(h(li), h(lk)))

where d(li, lj) represents the geodesic distance between lo-
cations li and lj , ϕ(h(li), h(lj)) measures habitat similarity
using cosine distance and τ denotes the temperature parameter.
The term N(i) represents the K nearest neighbors of location
i. The softmax function converts the attention weights to
probability distribution. The temperature parameter τ controls
the sharpness of the attention distribution, where lower values
(τ = 0.1 in our implementation) make the distribution more
focused on the closest locations, while higher values create a
more uniform distribution. We empirically found that τ = 0.1
provides the best balance between local and global spatial
dependencies.

The spatial attention mechanism focuses on weighting spa-
tially close locations (lesser the distance d(li, lj), more is the
attention weight) and ecologically similar habitats, enabling
the model to capture complex spatial dependencies in bird
movement patterns. The attention-weighted features, combined
with the original temporal features (seasonal s(t), rate δ(t),
rolling r(t)) and environmental features (weather parameters
and resource availability index), are all fed into the feature
integration component of the LightGBM framework, ensuring
that both raw and attention-weighted features contribute to the
final prediction.

E. Core Predictive Model

Following feature integration, the predictive model is a
tree ensemble to learn the best hypothesis for estimating the
target variable from the input features. The objective function
combines standard cross-entropy loss with penalties for spatial
and temporal coherence as below:

L(θ) = Lθ
ce(y, ŷ) + λ1L

θ
s(xs) + λ2L

θ
t (xt),

where Lθ
ce(y, ŷ) is the cross-entropy loss for classification with

ground truth denoted as y and the model predictions denoted
as ŷ. The spatial penalty Lθ

s(xs) enforces consistency between
predictions at spatially close locations, computed as the below
Mean squared error (MSE) loss:

Lθ
s(xs) =

1

|N |
∑
i,j

αij(ŷi − ŷj)
2.

In the above equation, ŷi and ŷj refers to the model’s pre-
dictions at locations i and j and αij being the respective
attention weights used to account for the MSE loss between the
locational predictions according to the the attention weights.

The temporal penalty Lθ
t (xt) enforces smoothness in pre-

dictions across time steps and is defined as:

Lθ
t (xt) =

1

T

∑
t

[
w1(t)(ŷt − ŷt−1)

2 + w2(t)(ŷt − ŷt−7)
2
]
.

In the above equation, ŷ, ŷt−1 and ŷt−7 refers to the model’s
predictions at time step t, (t−1) and (t−7) respectively. The
weights w1(t) and w2(t) control the relative importance of
day-to-day consistency (w1(t) = 0.3) versus weekly patterns
(w2(t) = 0.7). The higher weight on weekly patterns reflects
the strong seven-day periodicity observed in bird behavior,
while still maintaining smooth daily transitions.

This integrated architecture leverages spatial attention and
temporal coherence to capture complex ecological patterns
in bird observations. The effectiveness of each component is
empirically validated through comprehensive ablation studies
and stability analysis, as detailed in Section V.

F. Hyperparameter Settings

The model’s hyperparameters were tuned through cross-
validation on the training set. For the LightGBM framework,
we used: number of trees = 1000, learning rate = 0.01,
max depth = 8, min data in leaf = 20, and feature fraction
= 0.8. The spatial attention mechanism uses K = 12 nearest
neighbors and temperature τ = 0.1. The loss function weights
λ1 and λ2 were set to 0.3 and 0.5 respectively, balancing
the importance of spatial and temporal consistency with the
primary classification objective. These values were selected to
maximize F1-score while maintaining ecological plausibility
of the predictions, as validated by domain experts.

III. IMPLEMENTATION AND EVALUATION

To evaluate the effectiveness of the methodology, we imple-
ment the framework for predicting American Robin sightings
in Michigan, using observational data collected from the eBird
platform [26]. Michigan provides a suitable study region due
to its diverse ecological conditions, ranging from urban envi-
ronments to forested areas, and its role as a critical stopover
for migratory birds.

A. Robin Dataset

The dataset comprises 40,059 American Robin observa-
tions across 1,152 unique geographical locations in Michigan,
sourced from eBird. We used observations from 2023 (Jan-
uary–December) for training (52.01%, 20,835 observations)
and 2024 (January–December) for validation (47.99%, 19,224
observations). The training-validation split was chosen to
reflect a real-world forecasting scenario, where past data is
used to predict future occurrences. We ensured that seasonal
trends and geographical distributions were consistent across
both years to minimize biases. Observations are categorized
into three classes based on count thresholds: low (1-5 birds),
medium (6-15 birds), and high (>15 birds). The dataset
exhibits a natural class imbalance, with small bird groups
being significantly more common than large gatherings. To
address this imbalance, we applied SMOTE to the medium and
high classes to improve class representation in model training.

Observations are spatially referenced and temporally in-
dexed, enabling the capture of migration patterns, habitat
preferences, and seasonal changes. Data preprocessing in-
cluded outlier removal (|z| > 3) and mean interpolation for



continuous variables to preserve temporal trends. Geographical
and habitat classifications were sourced from the National
Land Cover Database (NLCD) 2019 release [27], while meteo-
rological data–covering temperature, wind speed, precipitation,
and cloud cover–was obtained from OpenWeatherAPI. We
plan to open-source the dataset along with our prediction
model upon publication.

B. Implementation Details

The implementation consists of feature processing and
model training phases. For feature processing, we utilized
the previously described three-component architecture, with
specific implementation choices guided by domain expertise
and data availability.

The model was trained using LightGBM, optimized for
structured ecological data. The objective function combines
cross-entropy loss with spatial and temporal regularization
terms as detailed in Section II.E. We performed hyperpa-
rameter optimization using Bayesian optimization with 5-fold
cross-validation, running 100 trials to ensure robust parameter
selection. Results reported in Section IV are averaged over
10 independent runs with different random seeds to account
for statistical variations, with standard deviations reported
alongside mean performance metrics.

Training utilized early stopping with a patience of 50
epochs and SMOTE balancing to address class imbalance.
The SMOTE parameters were selected to maintain ecological
validity of the synthetic samples, as verified through domain
expert review of the generated data points.

IV. RESULTS AND ANALYSIS

This section presents a comprehensive analysis of our
model’s performance, demonstrating how its architecture ef-
fectively captures the complex patterns of bird behavior.

A. Model Performance

The model was evaluated on a spatiotemporal dataset span-
ning two complete annual cycles, encompassing both breeding
and migration periods. Table I presents a detailed performance
comparison against baseline models and ablated versions of
our architecture.

TABLE I
PERFORMANCE COMPARISON OF MODELS

Model F1-Score Precision Recall
Proposed Model 0.822 ± 0.008 0.815 ± 0.007 0.829 ± 0.009
W/O Spatial Attention 0.763 ± 0.009 0.758 ± 0.008 0.769 ± 0.010
XGBoost 0.656 ± 0.011 0.649 ± 0.010 0.663 ± 0.012
Random Forest 0.633 ± 0.010 0.628 ± 0.009 0.639 ± 0.011

The proposed model achieved an F1-score of 0.822±0.008,
with precision of 0.815 ± 0.007 and recall of 0.829 ± 0.009,
significantly outperforming all baselines. The high precision
demonstrates the model’s ability to accurately identify true
bird presence, particularly critical during migration periods
when false positives could mislead ecological studies. The
25.3% improvement over XGBoost and 29.9% over Random
Forest underscores the effectiveness of our ecology-driven

architecture in capturing the inherent complexity of bird
behavior.

B. Feature Importance and Ecological Patterns

To evaluate the contributions of different feature categories,
we conducted a detailed feature importance analysis and ab-
lation studies. This section quantifies the ecological relevance
of each feature, demonstrating how our model captures real-
world seasonal and spatial patterns in bird behavior.

1) Feature Importance Analysis: Feature importance
scores, derived from the trained LightGBM model, highlight
the dominant factors influencing bird sighting predictions.
Temporal features, particularly the 7-day rolling statistics,
exhibited the highest predictive power, reflecting the funda-
mental weekly rhythms observed in American Robin behavior
[28]. This aligns with ecological research indicating that
birds maintain regular foraging and movement patterns within
weekly cycles, even during migration.

Habitat features emerged as the second most significant
predictor. The model effectively learns habitat suitability, rein-
forcing the validity of its spatial component [29]. Weather pa-
rameters displayed a strong seasonal dependence, influencing
bird observations in different ecological contexts. Temperature
had the highest importance during winter, reflecting its role
in regulating food availability and metabolic demands [22].
Precipitation played a key role in the breeding season, aligning
with its impact on nest success and insect abundance [29].
Food availability followed a clear seasonal trajectory, peaking
in spring and summer when birds require high-energy food
sources for nesting and raising young.

These results confirm the model effectively captures sea-
sonal cycles, habitat preferences, and weather-driven varia-
tions, reinforcing its ecological validity.

TABLE II
FEATURE IMPORTANCE ANALYSIS WITH PEAK SEASONAL INFLUENCE

Feature Importance Score Peak Influence Season
7-day Rolling Mean 0.85± 0.02 Year-round
Habitat Type 0.76± 0.01 Spring
Temperature 0.72± 0.03 Winter
Food Availability Index 0.70± 0.02 Spring/Summer
Precipitation 0.68± 0.02 Spring/Summer

2) Ablation Study: Quantifying Feature Contributions:
To further analyze the contributions of different modeling
components, we conducted ablation studies by systematically
removing spatial and temporal features and evaluating the
impact on classification performance. Table III presents the
results.

TABLE III
ABLATION STUDY RESULTS: IMPACT OF REMOVING SPATIAL AND

TEMPORAL FEATURES

Component Removed F1-Score Precision Recall
Full Model (All Features) 0.822 0.815 0.829
Without Spatial Attention 0.763 0.758 0.769
Without Temporal Features 0.745 0.741 0.749
Without Both Components 0.687 0.682 0.691



The removal of the spatial attention mechanism resulted
in a 5.9% decrease in F1-score, highlighting its role in
capturing location-specific patterns and habitat preferences.
The more substantial impact of removing temporal features
(7.7% reduction) confirms the primacy of temporal patterns in
bird behavior, particularly the weekly and seasonal rhythms
that drive movement decisions [22]. The 13.5% performance
drop when both components were removed demonstrates their
synergistic relationship in modeling complex spatiotemporal
patterns.

These findings strongly align with established ecological
research, supporting the validity of our model’s design choices.
The performance decline without spatial attention confirms
that habitat characteristics and proximity-based spatial corre-
lations are essential for modeling bird activity [29]. Likewise,
the deterioration observed when removing temporal features
validates the importance of seasonal and migration-related
trends.

3) Ecological Interpretation of Feature Importance: Each
feature’s seasonal importance closely aligns with biological
expectations. Temperature is most critical in winter, when
thermoregulation and food scarcity significantly impact bird
behavior [22]. Food availability peaks in spring and summer,
consistent with the energy demands of nesting and juvenile
rearing. Precipitation is a key predictor in the breeding season,
affecting nesting success and invertebrate abundance [29].

The strong alignment between feature importance scores
and known ecological trends demonstrates that our model
captures real-world behavioral patterns rather than overfitting
statistical artifacts. These results validate the effectiveness of
integrating spatiotemporal correlations, habitat structure, and
dynamic environmental features in bird sighting predictions.

C. Limitations and Future Directions

As the first attempt to incorporate spatio-temporal features
with ecological principles in bird sighting prediction and
demonstrating strong performance, the proposed model could
be extended in several promising directions for future research.
While our current temporal modeling effectively captures
seasonal patterns and weather effects, extending this approach
could incorporate longer-term climate trends. Future work
could explore dynamic temporal modeling approaches, lever-
aging climate projections and anomaly detection to enhance
long-term predictive capabilities.

Our model effectively utilizes eBird data, one of the most
comprehensive bird observation datasets available. While its
crowd-sourced nature enables large-scale data collection, it
may introduce observational biases. Future research could
integrate additional data sources such as automated acoustic
sensors and radar-based tracking systems, complementing cit-
izen science observations with automated monitoring data.

While we demonstrate the framework’s effectiveness us-
ing American Robin data in Michigan, the approach is de-
signed for broad applicability. The model’s architecture can be
adapted to different species and regions, opening opportunities
to study diverse migratory patterns and habitat preferences

across species. This extensibility makes our framework a valu-
able foundation for broader ecological modeling applications.

V. RELATED WORK

Bird activity prediction has been a focal point in ecological
research, with applications ranging from biodiversity moni-
toring to conservation planning. Much of the existing work
on bird prediction has focused on coarse-grained applications,
such as estimating species distributions [5], modeling pop-
ulation changes in migratory bird species [6], and learning
seasonal bird movement patterns [7].

For such applications, species distribution models (SDMs)
and generalized additive models (GAMs) are widely used to
predict bird presence or absence based on environmental vari-
ables like temperature, precipitation, and vegetation cover [30],
[31]. These models are effective for large-scale studies but
lack the resolution to capture fine-grained temporal and spatial
dynamics, such as daily or hourly bird activity patterns [2].
For example, studies using SDMs have successfully predicted
bird distributions across continents but struggle to account for
localized factors like microhabitat preferences or short-term
environmental changes [32].

Similarly, general-purpose machine learning approaches,
such as random forests and neural networks, have been applied
to model bird migration routes and stopover sites [33], [34].
While these methods improve predictive accuracy, they remain
limited to coarse-grained outputs and do not address fine-
grained bird sightings.

In contrast to these existing approaches, as far as we know,
our work presents the first framework that explicitly integrates
spatiotemporal features with ecological principles for fine-
grained bird sighting prediction. By combining attention mech-
anisms with domain-specific constraints, our method achieves
both the temporal resolution and ecological validity needed
for accurate daily predictions.

VI. CONCLUSION

This paper advances spatiotemporal modeling for ecological
systems through a novel architecture that integrates domain-
specific constraints with modern machine learning techniques.
Our framework’s superior performance, achieving an 82.2%
F1-score while maintaining interpretability, demonstrates that
explicitly modeling ecological principles can significantly im-
prove predictive accuracy. The success of our spatial attention
mechanism in capturing habitat dependencies suggests broader
applications for attention-based approaches in spatiotemporal
prediction tasks where domain expertise can inform attention
weights. Looking ahead, as ecological datasets continue to ex-
pand, our model provides a robust foundation for frameworks
that seamlessly integrate domain knowledge with learning
algorithms, playing a crucial role in advancing both machine
learning methodology and ecological understanding.
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